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Abstract

Recent experimental and theoretical efforts have focused on using liquid-crystal systems as a test

bed for understanding the statistical mechanics of quenched random disorder. In particular, the

weakly first-order isotropic to nematic (I -N ) and the second-order nematic to smectic-A (N -SmA)

phase transitions have been intensely studied under two, topologically distinct configurations: (I)

confined within a porous media as a function of pore size or (II) perturbed by an imbedded gel as

a function of solids density. Thermodynamically singular phase behavior appears to be preserved

in an experimentally accessible range of physical parameters governing both I and II. This work

reviews the observed transitional behavior of the I -N and N -SmA phase transitions as a function

of quenched random disorder given by these two configurations. The results to date have revealed

a rich variety of effects, confirming some theoretical models, challenging others, all the while

displaying ever new phenomena with relevance to a wide range of issues in complex fluids.

PACS numbers: 64.70.Md, 61.30.Eb, 61.10.-i
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I. INTRODUCTION

Liquid-crystals (LC) are a class of materials exhibiting thermodynamically stable but only

partially ordered phases. Each mesophase is described by its own order parameter, such as

a second rank tensor for orientational order (nematic phase) or a two-component vector for

the one-dimensional translational order (smectic phase). In addition, transitions between

mesophases involve the breaking of continuous symmetries as well as a variety of universality

classes. Therefore, many fundamental ideas of the modern theory of phase transitions and

critical phenomena have been tested in LC systems. Although there remains some important

outstanding questions, our understanding of bulk phase transitional behavior is largely a

solved problem and a triumph of statistical mechanics.

The study of the effect of quenched random disorder (QRD) on phase transitional be-

havior remains an attractive area of research due to the broad implications outside the

laboratory. The underlying physics has applications ranging from unique assemblies of com-

plex fluids to doped semiconductors. Many systems have been the focus of both theoretical

and experimental studies. The experimental efforts have concentrated on idealized model

systems in the hopes of isolating the essential features of quenched random disorder. They

include the still enigmatic superfluid transition of 4He in aerogels and controlled porous

glasses, the superfluid transition and phase separation of 4He-3He mixtures in silica aero-

gels [1], and doped magnet systems [2]. Relatively recent efforts with liquid-crystal (LC) –

silica composites (using either aerogels or aerosils) [3–9] have demonstrated that these are

especially interesting model systems. Vycor-like controlled porous glasses have also been

used to study liquid-crystals [10–12] but there are still some important questions as to the

nature of the disorder. Liquid-crystals are of particular importance as a way to access “soft”

(elastically weak) phases of continuous symmetry, which are directly coupled to surfaces and

external fields.

The general consensus is that the physics of QRD in liquid crystals is essentially contained

by a random-field approach [13]. For second-order phase transitions, recent theoretical

efforts predict that an Ising system with quenched random fields will move towards a new

random-field Ising (RFI) fixed point with increasing disorder. However, a random-field

XY (RFXY ) system has no new fixed point that is stable. Here, with increasing strength

of the disordering random field, an RFXY system still has flows toward the XY fixed
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point until long-range order is destroyed [13]. Thus one expects, in general, that a 3D-

XY system subject to random-field perturbations has no true long-range order (LRO). A

detailed theoretical study of QRD effects on smectic ordering in liquid crystals [14] concludes

that arbitrarily small amounts of QRD destroy even quasi-LRO and hence no true smectic

phase exists since the smectic correlation length remains finite for all strengths of disorder

and all temperatures. This theoretical conclusion is in agreement with x-ray studies of

octylcyanobiphenyl (8CB)+aerosil dispersions [9, 15] as well as 8CB+aerogel [5, 16]. These

x-ray studies reveal a finite smectic correlation length for all temperatures and densities

of silica. However, for aerosil systems, the director and smectic correlation lengths are

quite large and smectic thermal fluctuations still exist above a pseudo-nematic to smectic-

A transition at T ∗ (close to but below T o
NA for pure 8CB). These smectic fluctuations are

expected to remain in the XY universality class but also show crossover behavior from

Gaussian tricritical (TC) to 3D-XY with increasing strength of disorder [15].

First-order transitions with QRD have additional considerations than continuous transi-

tions due to the possibility of two-phase coexistence (hence interfaces between ordered and

disordered regions), intrinsically finite correlation length at the transition, and hysteresis ef-

fects. This has made the experimental and theoretical studies of quenched random disorder

effects at first-order transitions much more challenging. Although the random-field model

is the same starting point, first-order transitions have the added complication of an energy

penalty for the formation of interfaces between coexisting phases [17]. In this view, the

QRD effect is as a random-field in each domain randomly shifting each domains transition

temperature thus smearing the overall transition. However, nematics are very ”soft” ma-

terials, and their elasticity can play an important role. A recent theoretical study, applied

renormalization group analysis to the ordering of nematics with quenched random disorder

concluded that such systems belong to the Random-Anisotropy (RA) Heisenberg class [18].

The observed suppression of the latent-heat of the first-order transition to nematic order

with increasing QRD for 8CB+aerogel and other rigidly confined porous systems appears to

be consistent with the random transition temperature model [17] but the observed behavior

for 8CB+aerosil is not and is perhaps more closely related to the RA-Heisenberg model [18].

In the above discussion, there are three relevant length scales to consider: the disorder

correlation length dS (the correlation length of the random surfaces), the mean-open length

lo (the correlation size of the open space), and the correlation length of the ordering phase
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ξ. For a random-field system to be applicable, ξ may be equal to or larger than lo depending

on the extent of finite-size effects but dS must be smaller than either in order for the average

orientation of the effective field to be zero (although the average of the RF squared is not).

For controlled porous glasses, the presence of pores suggests that a circumference exists that

is a measure of dS and larger than the mean-open length (diameter) by approximately a

factor of π. In this case, both second and first-order phase transitions can be understood

by a single-pore model [10, 11] where the observed behavior is the result of the average of a

random distribution of individual pores.

In all fluid systems studied to date as models of QRD effects, including the liquid-crystal

system mentioned above, the random perturbations are introduced via the embedding of

a random (gel-like) solid structure into the phase ordering material or by the explicit con-

finement to a porous structure. An open question remains as to the connection between

the concentration and randomness of such solid inclusions and the strength of the random

disordering field. Also, the identification of QRD is complicated by finite-size effects which

could, in principle, play a dominant role in such systems. In simple finite-size scaling (FSS),

where the confining surfaces play no interactive role, the bulk critical correlation fluctua-

tions are cut off at a length dictated by the distance between surfaces, which corresponds

to a minimum reduced temperature where the transition is “truncated.” However, when the

surfaces are arranged in a random manner with high void connectivity in order to introduce

QRD, the distance between surfaces no longer acts as an upper length scale in the system,

and changes in the transition’s critical behavior may also occur. Given the absence of LRO

in such perturbed systems, the required characterization of the critical behavior may not

be possible. In spite of this, if a critical power-law analysis of the transition heat capacity

data is available, then, through two-scale universality, the critical behavior of the correlation

length for T > T ∗ may be estimated and compared with direct measurements. Finally, if

the introduced random surfaces have in addition the freedom of an elastic response, then

coupling between the gel and host elasticities can occur. This latter effect has only begun

to be explored theoretically [19–21].

Given the myriad of effects possible with LC+QRD, the focus of this work is to review

thermodynamic results for the same LC, octylcyanobiphenyl (8CB) with different silica

arrangements providing the QRD. This LC provides a first-order isotropic to nematic (I -N )

and second-order nematic to smectic-A (N -SmA) phase transition for the study of QRD.
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There are three silica systems that are the focus of this paper: a colloidal gel of aerosil

particles dispersed in the liquid crystal (denoted as 8CB+aerosil), a fused silica gel of aerogels

immersed in 8CB (denoted as 8CB+aerogel), and a randomly interconnected controlled

porous glass filled with 8CB (8CB+CPG). The LC+aerosil and LC+aerogel are nearly

identical in every respect – fractal-like nature of the gel structure, surface chemistry, and

density – save for their relative elasticity. Additionally, the ease of achieving nearly arbitrary

silica densities for the aerosil system allows for greater control of the disorder. For the

8CB+aerosil system, thermal evidence for two regimes of behavior has been found [3]: low-

density gels where pseudocritical behavior is closely related to that for the pure LC and

higher-density gels where all transition features appear to be smeared. More rigid aerogels in

LC+aerogel systems are crudely like the LC+aerosil gels in the high density regime but differ

in some important ways since the elastic strain imposed by the random anchoring surfaces of

aerogels is fully quenched. The LC+CPG has a topologically distinct arrangement of silica

surfaces than either LC+aerogels or LC+aerosils (pores rather than voids), which varies

the randomness of the fully quenched disorder. It appears that the disorder introduced by

an aerogel is the greatest (all “transition” features are dramatically smeared) while that

of CPGs is less so, and the physics of such systems may be more closely related to static

random-elastic strain disorder.

The goal of this review is to catalog the thermodynamic results of phase transitions for the

same liquid-crystal (8CB) interacting with the same surface (silicon-oxide) for three distinct

random arrangements (fused gel, elastic gel, and porous glass) in order to sharpen the focus

on the nature of quenched random disorder. It is organized as follows. A phenomenological

description of gels and porous media are given in Sec. II. Section III reviews the essen-

tial behavior of the first-order isotropic to nematic (I -N ) and the second-order nematic to

smectic-A (N -SmA) transitions of the liquid crystal 8CB within three types of silica me-

dia; aerosil gels, aerogels, and controlled-porous glasses (CPGs) behavior near the N -SmA

transition. The application of scaling analysis to calorimetric results on the 8CB+aerosil

system is presented in Sec. IV with comparisons made to the 8CB+aerogel and 8CB+CPG

systems. Section V summarizes the conclusions that can be drawn regarding the nature of

quenched, randomness, and strength of the quenched-random disorder.
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II. GENERAL DESCRIPTION OF POROUS MEDIA: RANDOM-SURFACE

MODEL

For liquid-crystals, the introduction of quenched random disorder requires the inclusion

of fixed random solid surfaces. This can be accomplished by the percolation of a low-

volume-fraction gel structure randomly arranged throughout the LC host. Such gels can be

physically realized by a diffusion-limited-aggregation or polymerization process, which forms

fractal-like structures having a wide distribution of void length scales. In practical terms,

the fractal-like character is limited to length scales much larger than the size of the basic

unit and smaller than some macroscopic size limiting the gel, i.e., the sample size. These

systems are typified by colloidal dispersions of silica within an LC host such as LC+aerosils

and LC+aerogels.

Because of the hydroxyl groups on the surface of the 7 nm-diam hydrophilic aerosil (SiO2)

spheres used in this work, hydrogen bonding is possible between aerosil particles [22]. When

dispersed in an organic liquid medium, aerosil particles comprising three to four lightly

fused spheres and having a mean radius of gyration of ≈ 24 nm [3] will attach to each other

and form a gel by a diffusion-limited aggregation process. This gel can be thought of as a

randomly crossing “pearl necklace” of silica and a cartoon depiction is given in Fig. 1. The

hydrogen-bonded nature of the silica “links” is relatively weak and gives these gels the ability

to break easily and reform on moderate time scales (such gels are termed thixotropic). In

addition, because of the diffusion-limited aggregation process by which gelation occurs, the

structure of the final gel may become anisotropic if the gelation occurs in an anisotropic fluid,

i.e., gelation in a well-aligned nematic or smectic liquid crystal. This gives such colloidal gels

very attractive uses in future research as a route to studying anisotropic random disorder

[23].

These aerosil gels are very similar in structure to the well-known and previously studied

aerogels, which are another type of fractal silica gel. Aerogels are formed by a reaction-

limited aggregation process and form a gel nearly identical to that of aerosils except that

the nearly identical basic silica units in aerogels are chemically fused together. Thus, aerogels

have a large shear modulus (they break before yielding) while in contrast aerosil gels have a

quite small, density-dependent, shear modulus [24]. Thus, aerosil gels can respond elastically

to strains, which may turn out to be a crucial difference as will be discussed later. For the
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present work, the thixotropic character ensures that the silica strands mainly dictate, at

low silica concentrations, the local nematic director without imposing high-energy elastic

strains over the material throughout the void. As the silica density increases, the aerosil gel

eventually becomes stiff enough to elastically strain the host fluid.

Another route is the inclusion of the LC within random porous media. Such a media is

formed by the spinoidal decomposition of a binary glass melt then subsequent leaching of

one of the glass components. These are widely known as controlled porous glasses (CPGs) or

Vycor. The random solid surfaces in CPGs are topologically distinct from gels. In general,

gels are random stands of nearly constant diameter, thus a solid chord length is a measure

of the correlation of the surfaces. In CPGs, there is a direction where travelling along the

solid surface returns to the starting point thus defining a pore circumference. See Fig. 2.

An important difference between gels and CPGs is that gels have nearly identical base units

thus the mean length of a solid region is nearly constant while for CPGs, the mean length

of a solid depends strongly on silica density.

For any random arrangement of surfaces, a mean distance between solid surfaces or a mean

open length, lo, can be uniquely defined despite the wide distribution, this is denoted as a

random-surface (RS) model. The definition of lo in terms of macroscopic, and experimentally

accessible, quantities begins by imagining a “straw” of uniform cross section A sent through

the gel; see Fig. 1. The places where the gel randomly intersects the “straw” defines a

solid length dS while the distance between intersections defines a open length. The relevant

macroscopic quantities are the specific surface area a in total surface area per mass (given

as 300 m2 g−1 [22] for the type R300 aerosil) and the conjugate density, ρS = mass of solid

per open volume or in our case grams of silica per cm3 of LC. Since the cross section of this

imaginary straw is uniform, the proper summing of the total open and solid volumes of the

straw depends only on the open and solid lengths, respectively, noting that each void must

be bounded by two walls. The sum of the total solid length and the total open length is

simply the length of the straw which spans the sample.

The two requirements for volume and length defined above allow the definition of the

average open length as

lo = 2/aρS . (1)

See Refs. [3] and [25] for a more detailed derivation. This definition of lo is valid only

in the dilute regime where the addition of more solid does not significantly change the
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specific surface area. However, as the concentration of solid increases, more surface area is

lost due to multiple connections (“clumping” of basic units); thus the specific surface area

should be a decreasing function of the solid volume fraction Φ. A limiting case of interest

is when completely enclosed pores occur. Here, the open volume is now bounded on all

sides and a rederivation of the mean void (now pore) size along the lines described above

yields lo = 6/aρS. This can be recast into the form given in Eq. (1) if apore → avoid/3.

Thus, Eq. (1) is a general for a random surface structure if the variation of a with ρS is

known. The exact variation of a with solid concentration depends on the specific process

of densification for gels and the kinetics of the spinoidal decomposition for CPGs. For gels,

both aerosil gels and aerogels have nearly identical structures [16] and an estimate for the

variation of a(ρS), in m2 per gram, is a = 300 − 103.8ρS, where ρS has the units grams of

SiO2 per cm3 of LC. The condition for completely closed pores is crudely predicted to occur

at ρS ≈ 1.97 g cm−3 (assuming a continuous process of diffusion-limited aggregation). For

all LC+aerosil and LC+aerogel samples studied to date, the density of silica employed has

been well below that limit and the use of this estimate of a(ρS) in Eq. (1) reproduces quite

closely the SAXS measured void sizes of aerogels. For CPGs, this model does not work as

well given that the first-order approximation of a(ρS) is too crude as well as a mean-solid

chord length strongly dependent on silica density. However, the mean-open length lo and

the specific surface area a are experimentally measurable by BET nitrogen isotherms and

a test of this model (where the relation a(ρS) has been used to eliminate ρS from Eq. (1)

is shown in Fig. 3. This indicates some confidence in the general model, revealing a cross

over from voids to pores at ac ∼ ao/2, where ao is the dilute regime specific surface area.

The above considerations indicate that the mean-open length lo can be used as a metric to

compare the different CPGs and gels systems.

From the above discussion, the conjugate density ρS or lo is an attractive quantity to

describe the gel and its disordering character [26]. Note that the volume fraction of LC in a

silica boundary layer of thickness lb is given by p = lbaρS [3]. This quantity p is the fraction

of LC filling the voids that is in direct contact with the solid surfaces and thus considered

strongly “pinned”. Since p is a natural measure of the “disordering strength” of the gel, ρS

is expected to be linearly related to this QRD strength for low to moderate ρS values [27].
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III. GENERAL OBSERVATIONS OF 8CB+SILICA THERMODYNAMICS

A. First-order transitions with QRD: The isotropic to nematic transition

The isotropic to nematic behavior with the three type of QRD introduced by silica surfaces

are characterized by two parameters: the total transition enthalpy ∆HIN shown in Fig. 4

and the shift in TIN shown in Fig. 5 as a function of lo for 8CB+aerogel [16], 8CB+CPG [10],

and 8CB+aerosil [3] (where available). There are two distinct behaviors. For 8CB+aerogel

and 8CB+CPG samples, the ∆Cp(IN) behaves as a single feature, progressively broadening

with increasing silica content or decreasing lo. However, for 8CB+aerosil, a double ∆Cp(IN)

feature is for silica content below ρS ≈ 0.1 suggesting two transitions to the disordered

nematic state while a single feature reminiscent of the 8CB+aerogel and 8CB+CPG samples

is seen for higher densities. This two-regime behavior for the 8CB+aerosils is also reflected

in the non-monotonic shift downward of TIN . The total transition enthalpy also decreases

with decreasing lo for 8CB+CPG and 8CB+aerosil (the latent-heat was not measured for

8CB+aerogel samples) but below lo ≈ 67 nm, the 8CB+aerosil depresses ∆HIN much

more strongly. Both indicate that the first-order character decreases with decreasing lo

and consistent with the general behavior of first-order transitions with QRD [17] though

there remains many questions regarding the details.

B. Second-order transitions with QRD: The nematic to smectic-A transition

Non-monotonic evolution of the effective transition temperature for the N -SmA transi-

tion is also seen and shown in Fig. 6 for 8CB+aerosils with comparison to 8CB+aerogel

and 8CB+CPG systems (taken from the same references). The nematic temperature range

shown in Fig. 7 indicate that for sufficiently small (large) ρS, the shift in TIN and T ∗ track

each other. For 8CB+aerogel and 8CB+CPG samples, the nematic range almost imme-

diately begins to grow with decreasing lo but over the thermodynamically sharp behavior

of 8CB+aerosil it does not. The essential feature of ∆Cp(NA) is the observation that low

silica density for 8CB+aerosil and for the 8CB+CPG samples pseudocritical behavior is

found that parallels the critical behavior exhibited by pure LCs in spite of the absence of

long-range smectic order. Calorimetric data for 8CB+aerosils [3] support this view that

effective critical behavior occurs for low silica density 8CB+aerosil samples while a critical
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analysis is still possible for 8CB+CPG samples [10].

The full power-law form in terms of the reduced temperature t =| T − T ∗ | /T ∗ used to

analyze experimental specific heat data associated with the N -SmA phase transition is [28]

∆Cp(NA) = Cp(observed)− Cp(background)

= A±t−α(1 + D±t∆1) + Bc , (2)

where the critical behavior as a function of reduced temperature t is characterized by an

exponent α, an amplitude A± above and below the transition, a critical background term Bc,

and corrections-to-scaling terms characterized by the coefficients D± and exponent ∆1 ' 0.5.

The effective exponent α results for fits to the excess N -SmA specific-heat (heat capacity

per gram of LC) data for 8CB+aerosil [3] and 8CB+CPG [10] as a function of inverse lo

(in order to capture the bulk behavior) is reproduced in Fig. 9. The results suggest that

despite the difference in the topology of the surfaces (the randomness of the disorder), the

evolution of the critical behavior is quite similar. Note that fits to the data with Eq. (2) can

include only data for | t |>| t±m | since the ∆Cp peak is truncated at a finite maximum value

hM ≡ ∆Cmax
p (NA).

IV. SCALING ANALYSIS OF THE N -SMA TRANSITION

In order to utilize a scaling analysis on second-order phase transitions, the maximum

length scale ξM and the appropriate critical fluctuation parameters must be well character-

ized. While ξM may be directly measured as the saturated correlation length, it can also

be inferred from the confining or disorder length scale. The critical fluctuation parameters

are particularly well determined by calorimetric studies. Thus relevant scaling relations,

described in detail in Ref. [29] are

δT ∗/T ∗ ≈ 2t+m = 2(ξM/ξ‖o)
−1/ν‖ , (3)

hM = A±(ξM/ξ‖o)
α/ν‖ [1 + D±(ξM/ξ‖o)

−∆1/ν‖ ] + Bc , (4)

to describe the fractional temperature rounding of the transition and the specific-heat max-

imum, respectively. Here, two approximations will be explored. In the first case, the mean

void size (or disorder length scale) is used as the cutoff length scale ξM = lo and the bulk

critical parameters. This approach represents conventional finite-size scaling, denoted as
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FSS, where the cut off length scale is set by a natural length of the “confinement.” In the

second case, the calorimetrically determined critical parameters and two-scale predictions

for the bare correlation length and exponent are used to set the cutoff length scale to the

saturated (low-temperature) parallel smectic correlation length, i.e., ξM = ξLT
‖ . This analy-

sis recognizes that the random-field effects truncate the growth of order and tests whether

two-scale universality is obeyed on approaching this truncation. This approach is labelled

random-field scaling, or RFS for short.

The specific-heat maximum hM ≡ ∆Cmax
p (NA) is plotted versus ρS in Fig. 10 for

8CB+aerogel, 8CB+CPG, and 8CB+aerogel samples. Given as the solid line on this log-log

plot is the simple scaling prediction using only the leading singularity of the pure 8CB heat

capacity and the lo as the truncation length. Interestingly, the full FSS analysis, which uses

the pure 8CB critical parameters and ξM = lo from Eq. (1), appears to work very well over

the entire range of lo for the 8CB+aerosil system. This is surprising since the critical be-

havior of the 8CB+aerosil samples is changing with silica content, see Ref. [3] the saturated

parallel smectic correlation length ξLT
‖ is much larger than lo for all samples [15]. Thus, the

significance of this agreement is not clear. Both the 8CB+aerogel and 8CB+CPG scaling

follow a simple l−1
o relation not contained by the FSS analysis.

The analysis denoted as RFS uses the evolving specific heat critical behavior and two-

scale universality predictions for the equivalent correlation length critical behavior for at

each ρS for the 8CB+aerosil samples. The low-temperature experimentally measured satu-

rated parallel correlation length ξLT
‖ [15] is used as the truncation length ξM . This analysis

reproduces very closely the observed heat capacity maximum and is completely consistent

with both the effective critical behavior and the maximum smectic correlation length. Un-

fortunately, this analysis is only applicable up to ρS ≈ 0.1, or lo > 67 nm, since a critical

analysis of ∆Cp(NA) is not possible for larger ρS [3]. Note that hM for 8CB+aerogel sam-

ples cannot be described by either scaling methods. For either scaling approximation to

reproduce the aerogel results, a far smaller ξM is required indicating that the aerogel has a

much stronger disordering influence than the aerosil at any given ρS value. No saturated

low-temperature smectic correlation lengths are available for 8CB+CPG but given the sim-

ilarity of the critical evolution between 8CB+aerosil and 8CB+CPG, these too would have

to be quite small.

The fractional rounding of the transition δT ∗/T ∗ for 8CB+aerosil and 8CB+aerogel sam-
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ples is given versus ρS in Fig. 11. For samples where critical specific-heat fits were not pos-

sible, i.e., 8CB+aerosil for ρS > 0.1 and all 8CB+aerogel samples, the fractional rounding

is estimated ad hoc as ≈ 10% larger than the width between inflection points in ∆Cp. As

was seen in Fig. 10, the FSS analysis works well for all densities of 8CB+aerosil samples.

As before, this is surprising given the known changes in critical behavior and the fact that

ξLT
‖ > lo. The RFS analysis predicts a somewhat sharper transition than is observed. The

observed rounding is not likely influenced by the amplitude of temperature oscillations em-

ployed by the ac-calorimetric technique in Refs. [3] and [16], which is on the order of 5 mK

and would account for a fractional rounding of only ∼ 10−5. The estimation t−m = t+m explicit

in Eq. (3) may be in question as it assumes that the unknown critical behavior of the corre-

lation length below T ∗ is the same as that above T ∗. A consequence of these arguments is

that the agreement of FSS is likely accidental although intriguing. Again, the 8CB+aerogel

and 8CB+CPG fractional rounding is much larger than that for the 8CB+aerosil samples,

which is an indication that a smaller ξM is required and supports the view of a stronger

disordering influence for the aerogel than the aerosil.

Figure 8 presents the N -SmA transition enthalpy δHNA versus ρS for 8CB+aerosil and

8CB+aerogel samples. Unlike hM and δT ∗/T ∗ which are measures of truncation effects on

∆Cp very close to T ∗, δHNA =
∫

∆Cp(NA)dT is sensitive to both truncation and changes

in the shape of ∆Cp over its entire temperature range. This is discussed in detail in Ref. [3].

A finite-size scaling analysis for δHNA proceeds by integrating the available ∆Cp critical

form approximately ±3 K about T ∗ (|t| ≈ 10−2) to the point corresponding to t±m. As

an approximation, a linear evolution of ∆Cp between t+m and t−m is assumed. The FSS

analysis, given by the solid line in Fig. 8, does not agree well with the data for either

system. The failure of this model is not surprising since it ignores any changes in the

∆Cp critical parameters such as A± and α with ρS. A RFS analysis would not be very

meaningful for δHNA since for ρS < 0.1, the input parameters for this model automatically

ensure perfect agreement. Also, the necessary input critical parameters cannot be obtained

for 8CB+aerosil samples with ρS > 0.1 or for any of the 8CB+aerogel samples.
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V. DISCUSSION AND CONCLUSIONS

Despite the loss of long-range smectic order, quasicritical thermal fluctuations remain

important at high temperatures for low silica density 8CB+aerosil and 8CB+CPG samples.

In addition, two-scale universality analysis provides a link between the SmA quasicritical

behavior of the heat capacity and the correlation lengths. The smectic fluctuations are

modified from the pure 8CB behavior due to the effects of quenched random disorder. The

evolution of the effective critical exponent α for the 8CB+aerosil and 8CB+CPG systems as

a function of lo mirrors that of pure LCs as a function of the McMillan ratio RM reflecting

the suppression of the nematic susceptibility with increasing nematic temperature range. As

shown in Ref. [15], the density ρS of an aerosil gel is directly correlated to the McMillan ratio

RM of pure LCs, both of which are indicators of the strength of smectic-nematic coupling.

The flow of the effective critical behavior for the N -SmA transition shown in Fig. 9 as a

function of QRD induced decoupling is consistent with theoretical predictions that no new

fixed point is present for the RFXY model [13]. For the liquid-crystal – silica dispersion

system studied here, the flow is from near a Gaussian tricritical point toward the 3D-XY

fixed point and appears independent of the topology of the silica structure.

This crossover behavior is explained for pure LCs by a decrease in nematic – smectic

coupling as RM decreases. For 8CB+aerosils, an increase in ρS appears to have the same

effect. Recent work has found that aerosil gels exhibit dynamics which can couple to a host

liquid crystal [30] presumably through direct coupling to director fluctuations. Also, recent

deuterium NMR studies of 8CB+aerosils [6] found no appreciable change in the magnitude

of orientational order above T ∗ for ρS < 0.1. The reason appears to be that the aerosil

particles form a hydrogen-bonded thixotropic 3D gel network that provides (a) random

anchoring surfaces for 8CB molecules and (b) because of the flexible/fragile nature of the

silica gel, random elastic dampening of elastic (director) fluctuations occurs in the liquid

crystal. Both effects will reduce the nematic orientational susceptibility by suppressing

director fluctuations. Thus, increasing ρS in LC+aerosil samples is equivalent to decreasing

RM in a pure liquid crystal, which in the case of 8CB drives its critical behavior towards XY .

This may have important consequences for the bulk N -SmA behavior as theoretical efforts

have mostly concentrated on the de Gennes type of smectic coupling to the magnitude

of nematic order, and it appears that the coupling to director fluctuations may play an
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important role in this crossover behavior.

Because the random disorder is introduced by the inclusion of network gel structures

within the liquid crystal, finite-size effects can exist and may play a role in truncating

thermally driven fluctuations. Such effects would explain the increasing suppression of the

heat capacity peak with increasing ρS, which corresponds to decreasing the mean distance

between solid surfaces. Scaling analysis provides a good description of the maximum heat

capacity and the fractional rounding (or truncation) of the transition for all 8CB+aerosil

samples. However, FSS analysis does not provide a good prediction of the trend with ρS

for the transition enthalpy δHNA =
∫

∆Cp(NA)dT . The reason for this is the fact that the

trend in δHNA is dominated not by the truncation of the ∆Cp(NA) peak but by the changes

in shape and size of ∆Cp(NA) over its entire range, and the latter effect is due to crossover

rather than finite size.

Below the pseudotransition temperature T ∗, the correlation lengths and the amplitudes

of the thermal term in the smectic structure factor for 8CB+aerosils saturate and are ap-

proximately temperature-independent [15]. Quenched random disorder imposed by the

aerosil gel network dominates the smectic fluctuations below the pseudotransition. The

low-temperature parallel correlation lengths ξLT
‖ taken from [15] plus the corresponding per-

pendicular ξLT
⊥ values and the mean correlation lengths ξ̄ = (ξ‖ξ2

⊥)1/3. Also plotted are

the “isotropic” smectic correlation lengths reported at low temperature for 8CB+aerogel

samples [4], the mean-open length lo based on Eq. (1), and an estimate of the saturated

nematic director correlation length ξN measured in 6CB+aerosil samples [5]. The parallel

correlation length is much larger than lo but smaller than ξN for all 8CB+aerosil samples

studied. The first fact indicates than the smectic domains span many “voids” and it is thus

reasonable to expect that their influence is of a random-field type, while the latter fact is

physically reasonable since the observed smectic domains cannot be larger than the size of

a nematic domain. However, 6CB does not exhibit a smectic phase, so it remains unknown

how the director correlation length would change, if at all, due to the onset of smectic order.

Interestingly, the low-temperature 8CB+aerogel correlation lengths appear to agree fairly

well with lo, while the aerogel ∆Cp(NA) peak is severely rounded, indicating that 8CB is

very strongly perturbed by the rigid fused silica gel.

This idea of two regimes may be consistent with the picture of the aerosil gel described

earlier where, in addition to the random silica strands (“pearl-necklace” of aerosil beads)
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providing the random field dictating the local orientation of the nematic director, there

perhaps exists an elastic coupling of these tenuous strands to the nematic director. This

coupling would dampen the size of director fluctuations analogous to the effect of a wider

nematic temperature range, and this gives a physical interpretation to the critical flow with

random-field strength towards the underlying XY fixed point. The apparent increase in the

relative effect of the elastic coupling seen by the stronger scaling of the quenched random

disorder strength with silica density may be an indication that the aerosil gel has become

significantly stiffer when ρS > 0.1, suggesting the possibility that a rigidity transition has

occurred in the gel.

In conclusion, a combination of finite-size effects and two-scale universality concepts has

yielded a successful connection between 8CB+aerosil thermal behavior and x-ray correlation

length behavior. The truncation of ∆Cp(NA) peaks, measured by hM and δT ∗/T ∗, and the

observation of high-temperature 8CB+aerosil correlation lengths that are close to those

for pure 8CB are both well explained. The observed dependence of the integrated area

δHNA on ρS is not properly described by finite-size scaling, and the reason for this failure is

clear. Trends in δHNA(ρS) reflect the changing shape of ∆Cp peaks over a wide temperature

range as ρS varies. As described in Ref. [15] and in Sec. IV of the present paper, quenched

random disorder plays a dominant role in changing the effective pseudocritical exponents

that describe the smectic behavior in 8CB+aerosils. Such scaling relations do not work for

the nearly identical 8CB+aerogel system nor the topologically distinct 8CB+CPG system.

It seems possible that the elasticity of the aerosil gel plays an important part in the theory

of gels as a random perturbation acting on the N -SmA transition in liquid crystals. Theory

incorporating such elastic aspects is in progress [19]. The decoupling of nematic and smectic

order parameters may also occur in a highly interconnected porous structure of 8CB+CPG

via the pore geometry directly suppressing director fluctuations and may be understood in

view of a single-pore model [10].
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FIG. 1: A cartoon of an aerosil gel formed by a diffusion-limited-cluster aggregation process (a

similar structure is seen for aerogels but formed by a DL-polymerization process, both DLCA and

DLP yield fractal-like gels). Circles and “hairs” (upper left) represent type-300, 7-nm-diam, aerosil

particles and 8CB molecules, respectively, drawn to approximate scale. This cartoon corresponds

to an average open length lo ≈ 40 nm and ρS ≈ 0.20, where the density units are grams of silica

per cm3 of 8CB. The solid volume fraction is Φ ≈ 0.08. Open and shaded parts of the arrow depict

open and solid chords, respectively.
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FIG. 2: A cartoon of a controlled porous glass formed by spinoidal decomposition of a binary

glass melt. Note the presence of highly interconnected random pores rather than the topologically

distinct voids of gels seen in Fig. 1. The fundamental difference arises from the mean-solid chord

for porous media being strongly dependent on the specific surface area whereas in gels it is nearly

constant.
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FIG. 3: Mean-open size (lo) versus specific surface area (a) for controlled-porous glasses (deter-

mined by nitrogen isotherms [32]) and aerogels (determined by small-angle x-ray scattering [16]).

The random-surface (RS) model (solid line) is also shown and connects lo to a via the conjugate

density ρS , see text. The vertical dashed line indicates the boundary between pores and voids,

occurring at ac ∼ ao/2.
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FIG. 4: A semi-log plot depicting the evolution of the total I -N transition enthalpy normalized to

the bulk value ∆Ho
IN as a function of mean-open length lo for 8CB+CPG [10] and 8CB+aerosil

[3] systems. The vertical dashed line indicates the boundary between soft and stiff aerosil gels [3].
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FIG. 5: A semi-log plot of the I -N transition temperature shift from the bulk transition tem-

perature T o
IN as a function of mean-open length for 8CB perturbed by aerogels [16], CPGs [10]

and aerosils [3], see legend. The vertical dashed line indicates the boundary between soft and stiff

aerosil gels [3].

23



10 100 1000
-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

 Aerogels [Wu]
 CPGs [ZK]
 Aerosils [GI]

 

 

∆T
*  =

 T
*  -

 T
 o N

A
 (

 K
 )

l
o
 ( nm )

FIG. 6: The N -SmA transition temperature shift from the bulk transition temperature T o
NA on

a semi-log plot with the mean-open length for 8CB perturbed by aerogels [16], CPGs [10] and

aerosils [3]. Note the generally larger shifts of the smectic phase boundary. The vertical dashed

line indicates the boundary between soft and stiff aerosil gels [3].
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FIG. 7: A semi-log plot of the nematic temperature range scaled by the bulk value versus the

mean-open length for 8CB+aerogel [16], 8CB+CPG [10] and 8CB+aerosil [3] systems. The vertical

dashed line indicates the boundary between soft and stiff aerosil gels [3].
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FIG. 8: The lo dependence of the N -SmA transition enthalpy δHNA =
∫

∆Cp(NA)dT for 8CB

perturbed by silica on a semi-log scale. As before, data taken from Ref. [16] for 8CB+aerogels,

Ref. [10] for 8CB+CPGs, and Ref. [3] for 8CB+aerosils, see legend. The solid line depicts FSS

using bulk 8CB critical parameters using ξM = lo while the vertical dashed line indicates the

boundary between soft and stiff aerosil gels [3].
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FIG. 9: The effective heat capacity critical exponent α obtained from Ref. [3] for 8CB+aerosils

and Ref. [10] for 8CB+CPGs plotted against the inverse of the mean-open length (proportional

to the conjugate silica density ρS , see text). Note the similar flows toward the underlying 3D-XY

behavior with increasing QRD indicating similar suppression of nematic coupling between the two

systems. The vertical dashed line indicates the boundary between soft and stiff aerosil gels [3].

27



10 100 1000

0.1

1

863 nm

706 nm

294 nm

 Aerogels [Wu]
 CPGs [ZK]
 Aerosils [GI]
 FSS ( ξ

||
 = l

o
 )

 Slope = 1

 2-scale ( ξ
||
 = ξ LT

||
 )

 

 

h M
 (

 J
 g

−1
 K

−1
 )

l
o
 ( nm )

FIG. 10: Scaling plot of the N-SmA truncation hM ≡ ∆Cmax
p (NA) versus lo for 8CB+aerogel [16],

8CB+CPG [10], and 8CB+aerosil [3] systems. Both the solid line depicts FSS predictions based on

using bulk 8CB critical parameters ξ‖o and ν‖ to find the reduced temperature where ξM = lo and

includes corrections-to-scaling; see text. The dashed line indicates a slope of 1 common to both

aerogel and CPG perturbations. The ×’s are based on a RFS analysis using two-scale predicted

critical parameters (see text) and ξM = ξLT
‖ found in Ref. [15] (the values are noted in the figure).
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FIG. 11: A scaling plot of the fractional round-off region (gap about T ∗) for the N-SmA transition

where Cp power laws fail versus the mean-open length. The solid line depicts FSS predictions

using bulk critical parameters and the fluctuation cut off length, ξM = lo. The ×’s depict RFS

predictions using two-scale critical parameters and ξM = ξLT
‖ from Ref. [15].
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